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Abstract – The isolated substitutional gold impurity in bulk silicon is studied in detail using
electronic structure calculations based on density-functional theory. The defect system is found to
be a non-spin-polarized negative-U centre, thus providing a simple solution to the long-standing
debate over the electron paramagnetic resonance signal for gold in silicon. There is an excellent
agreement (within 0.03 eV) between the well-established experimental donor and acceptor levels
and the predicted stable charge state transition levels, allowing for the unambiguous assignment
of the two experimental levels to the (1+/1−) and (1−/3−) transitions, respectively, in contrast
to previously held assumptions about the system.

Introduction. – The role of gold as an impurity in
silicon has been studied extensively, due to its techno-
logical importance in the semiconductor industry: gold
doping introduces deep defect levels into the band gap of
silicon; such deep-level impurities reduce minority carrier
lifetimes, and can lead to a significant decrease in the con-
ductivity of the system [1]. It has also received renewed
interest due to the use of gold as a catalyst in the growth
of semiconducting nanowires using the vapor-liquid-solid
(VLS) method [2], which can result in the presence of gold
impurities in excess of the bulk solubility [3].

Since 1957, two defect levels have been identified as the
main contributions from Au impurity centres: a donor
level at εv + 0.35 ± 0.02 eV, and an acceptor level at
εv + 0.62 ± 0.02 eV, where εv is the valence band edge
and the band gap is 1.16 eV [4]. These measurements
have been confirmed by several different experimental
techniques [5], including a relatively recent study [6] us-
ing deep-level transient spectroscopy (DLTS), which has
clearly identified the defect centre as a single amphotheric
Au substitutional. However, the electronic structure of
this defect is still a matter of debate; this is mainly due to
the lack of an electron paramagnetic resonance (EPR) sig-
nal [5], in contrast to the isoelectronic Pt− defect, which
has been well characterized using EPR [7]. A possible
explanation for this situation has been given by Ander-
son [8], who proposed that rapid tunneling of the defect
between two trigonal C2v configurations results in an av-
erage value of g⊥ ≃ 0. This would make the microwave

transition probability between states small and hence any
EPR signal difficult to detect. This explanation is sup-
ported by Watkins et al. [9] in Zeeman studies of the sub-
stitutional Au excitation spectra; on the other hand, Son
et al. [10] have attributed an EPR spectrum to this defect
centre, concluding that it is paramagnetic with S = 1/2,
but with substantially different g values to those found in
Ref. [9], which makes it unlikely that both studies are ex-
amining the same centre. In each case there is a problem
with unambiguously identifying the defect centre, due to
the presence of other impurities and the large number of
Au-related complexes that are known to exist [11, 12].

In spite of its technological relevance and the many ex-
perimental studies that have been undertaken, there have
been very few computational simulations of the electronic
structure of this important defect centre. Self-consistent
Green’s function calculations of the Au substitutional de-
fect in an undistorted Si lattice [5] have shown the possi-
bility of both the donor and acceptor levels arising from
the same centre, in contrast to the results from a previous
cluster model [13]; the predicted level positions, however,
are 0.21 eV and 0.26 eV higher than the experimental mea-
surements for the donor and acceptor levels, respectively.
More recently, a density-functional theory (DFT) cluster
simulation [14] using a relaxed ionic configuration also ob-
tained two levels, although their positions were found to
be 0.14 eV and 0.12 eV lower than the experimental donor
and acceptor levels, respectively, in spite of the application
of an empirical correction.
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In this Letter, we determine accurately the donor and
acceptor levels of the isolated Au substitutional defect in
bulk Si using large-scale first-principles DFT calculations.
It is notable that our theoretical predictions, calculated
without the use of any empirical corrections or reference
levels, are found to be in excellent agreement with exper-
iment (within 0.03 eV): εv + 0.37 eV for the donor level,
and εv+0.59 eV for the acceptor level. These levels corre-
spond to the stable charge state transitions (1+/1−) and
(1−/3−), showing the neutral and doubly negative charge
states to be unstable. The defect centre, therefore, ex-
hibits a negative-U effect [15,16] and is not paramagnetic,
thereby explaining the absence of an EPR signal.
Our calculations represent a significant improvement on

previous theoretical studies of this defect centre, for the
following reasons: (i) a broader range of charge states has
been investigated (from 1+ to 3−), (ii) a large supercell is
used, and (iii) careful consideration has been given to the
sampling of electronic states in the Brillouin zone (BZ),
so that the sampled states possess the full point group
symmetry of an isolated defect in an infinite crystal. We
note that previous computational studies of the finite size
convergence properties of the silicon vacancy [17–19] (a
Jahn-Teller defect system closely related to the gold cen-
tre [20]) indicate that points (ii) and (iii) are crucial for
obtaining both the correct relaxation of the ions around
the defect centre, and the accurate positioning of the tran-
sition levels in the band gap.

Computational methods. – The formation energy
of the Au substitutional defect centre in charge state q
(denoted Auq) is defined as

Eq
f = Eq

def −

(

N − 1

N

)

Ebulk − µAu + qµe, (1)

where Ebulk is the total energy of the bulk supercell withN
atoms, Eq

def is the total energy of the same supercell with
one substitutional defect, µAu is the chemical potential of
the gold atom species1, and µe is the electronic chemical
potential. This last term is calculated from the energy
difference of the neutral bulk supercell and the same su-
percell with a single electron hole [19]. In the remainder of
this Letter we shall refer to ∆µe as the electronic chemical
potential relative to εv.
The calculations are performed using the plane-wave

pseudopotential DFT code castep [21] (version 5.0). Un-
less otherwise stated, we use a 256-atom BCC supercell of
the host material (bulk silicon), with Γ-point sampling of
the BZ. Exchange and correlation (xc) is treated within
the Ceperley-Alder local-spin-density approximation [22]
(LSDA). Core electrons are pseudized using the Vander-
bilt ultrasoft pseudopotential formalism [23], with 4 and
19 valence electrons for Si and Au, respectively. A plane-
wave cut-off energy of 400 eV is used, which is sufficient

1
µAu is taken to be the energy per atom of ideal FCC gold cal-

culated with the LSDA-DFT-optimized lattice parameter of 4.04 Å,
which is within 1% of the experimental value of 4.08 Å.

Table 1: Transition levels (in eV) obtained for relaxed (Rel.)
and unrelaxed (Unrel.) geometries using LSDA-DFT. Results
from previous studies are also shown. Asterisks (*) denote ther-
modynamically stable transitions. Experimental values for the
donor and acceptor levels are placed in line with our proposed
corresponding transition levels, as explained in the text.

Ref. [4] This study [5] [14]
Expt. Rel. Unrel. Unrel. Rel.

E (1+/0) – *0.38* *0.32* 0.56 0.21
E (1+/1−) 0.35 *0.37* *0.40* – –
E (0/1−) – *0.37* *0.48* 0.88 0.50
E (0/2−) – *0.48* *0.50* – –
E (1−/2−) – *0.59* *0.52* – –
E (1−/3−) 0.62 *0.59* *0.54* – –
E (2−/3−) – *0.59* *0.56* – –

to converge defect formation energies to within a tolerance
of 10 meV. The relaxed bulk Si lattice constant, used for
all of our calculations, is 5.39 Å, which is within 1% of
the experimental value of 5.43 Å. When calculating re-
laxed geometries, all the ions in the supercell are allowed
to move, and their initial positions are given small ran-
domized displacements to allow for symmetry breaking;
our convergence tolerance is 6 meV/Å for the maximum
force on each ion.

Results. – Following the definition of Baraff et

al. [15], the stable charge state transition level E (m/n)
is the value of ∆µe at which there is a crossing of the
defect formation energies of two charge states m and n,
leading to a change in the most stable state from Aum

to Aun as the Fermi level is raised. Our transition levels
are given in Table 1 for both the relaxed and unrelaxed
lattice.

The ionic relaxation has a large effect on the level or-
dering and positions, as shown in Fig. 1. For the unre-
laxed lattice, all the charge states from 1+ to 3− exhibit a
thermodynamically stable region, with the spin-polarized
neutral charge state having the lowest defect formation
energy for a range of ∆µe of width 0.16 eV. The lat-
tice relaxation, however, significantly lowers the formation
energy of Au1− (by between 0.07 eV and 0.16 eV more
than the other charge states), resulting in both the neu-
tral and doubly negative charge states being cut off, and
two thermodynamically stable double electron transitions
appearing, from Au1+ to Au1−, and from Au1− to Au3−.
In other words, the defect centre is a negative-effective-U
system as a direct consequence of the Jahn-Teller lattice
distortion, analogously to the behavior observed for the Si
vacancy [16].

The position of the two thermodynamically stable
transition levels for the relaxed system E (1+/1−) and
E (1−/3−) are in good agreement with the donor and
acceptor levels measured experimentally, with a discrep-
ancy of +0.02 eV and −0.03 eV, respectively. We note
that experimental measurements also vary on the order of
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Fig. 1: Formation energy of the different charge states of the defect as a function of the electronic chemical potential (plotted
relative to the VBM) using LSDA-DFT. The complete band gap (not shown) is of 1.2 eV. The thermodynamically stable charge
state at each point is highlighted in bold, and the circles indicate the level position for the stable transitions. The dashed
vertical lines show the experimental values for the transition levels (the uncertainty range is shown in gray).

Table 2: Geometry of the defect centre after relaxation for
the 256-atom supercell using LSDA-DFT. Bond lengths are
given between pairs of Si ions a, b surrounding the defect centre
(Fig. 2) and the Au impurity ion c. Equivalent bonds in each
system agree to within 0.01 Å, except for ones labeled with a
dagger (†), which agree to within 0.03 Å. The defect volume is
calculated from the tetrahedron formed by the four neighbours
of the impurity. The last line is for the unrelaxed centre.

Vol. Bond lengths (Å)

q Sym. (Å
3
) a–a b–b a–b a–c b–c

1+ D2d 6.78 3.71 3.71 3.95† 2.37 2.37

0 ∼D2 6.72 4.00 3.98
3.86/

2.36 2.37
3.73†

1− ∼D2d 6.60 4.02 4.02 3.75† 2.35 2.35
2− ∼D2d 6.60 4.02 4.01 3.75† 2.35 2.35
3− ∼D2d 6.61 4.03 4.00 3.76† 2.35 2.36

Td 6.54 3.81 3.81 3.81† 2.34 2.34

0.01 eV [4–6].

The ionic structure of the relaxed defect centre is given
in Table 2. The observed relaxation patterns can be un-
derstood using Watkins’ linear combination of atomic or-
bitals (LCAO) model of the vacancy [24] and transition
element impurities [20, 25] in Si, as shown in Fig. 2. In
our case, D2d symmetry is obtained via either the removal
or addition of an electron from Au0; this is achieved by
forming pairs between the four neighbouring atoms of the
defect centre, although in the former case the distance be-
tween pairs decreases, whilst in the latter it increases. For
Au0 the degeneracy is lifted on all the defect states; this
is conventionally assumed to be caused by a second dis-
tortion which differentiates between the pairs, resulting
in C2v symmetry. Our calculations show some evidence
of such behavior, as the two stretched bonds between ion
pairs differ in length for this charge state, and the Au

Fig. 2: Effect of Jahn-Teller distortion on the defect centre for
different charge states, following Watkins’ LCAO model. The
four orbitals a1, a2, b1, b2 are hybrids of the dangling bonds
surrounding the defect and the 6sp3 valence orbitals of Au [5].

ion moves along [100] towards the centre of mass of the
longer of the two (similarly to the findings of a previous
study [14]). However, we also find a much more promi-
nent distortion: a rotation of the ion pairs about the [100]
axis which breaks the symmetry of the four bonds between
pairs of neighbours (the a–b column in Table 2). This dis-
tortion is sufficient in itself to reduce the symmetry of the
defect centre to D2 and lift the degeneracy of the three
defect states.

Almost no difference is observed in the relaxed ionic
structure of the defect centre for charge states from 1− to
3−, in contrast to the model’s prediction of Td symmetry
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for 3−. However, this result is in agreement with what
has been reported for the Si vacancy [17–19], for which
the change in the relaxed defect volume monotonically de-
creases as more electrons are added, and a deviation from
the model’s symmetry predictions is observed for signifi-
cant negative charge. The stability of the double electron
transition E (1−/3−) upon relaxation is, therefore, due to
the relative differences in energy of the three charge states
for a common change in symmetry, rather than to distinct
relaxed symmetries, as is more commonly the case.
We note that both for the (1+/1−) and (1−/3−) transi-

tions the change in the total charge density upon addition
of the two extra electrons is localized predominantely in
the first few shells around the defect centre. We give a
detailed analysis of the electronic structure of the system
using maximally-localized Wannier functions in Sec. 6.4.5
of Ref. [26], confirming the validity of the LCAO model.

Discussion. – The results presented in the previ-
ous section are obtained with a Γ-point BZ sampling.
As already noted, our aim is to correctly describe the
symmetry-breaking Jahn-Teller distortion of the truly iso-
lated defect centre, whilst working within the constraints
of a periodically-repeated supercell. After relaxation, any
substitutional impurity in a diamond lattice can have
a point group symmetry up to and including Td, and,
hence, any sampled k-point should possess all elements
of this group. Amongst the high-symmetry points of the
three cubic Bravais lattices, there are only three k-points
other than Γ that possess the required degree of sym-
metry: R =

(

1
2 ,

1
2 ,

1
2

)

for the simple cubic (SC) lattice,

and H =
(

1
2 ,

1
2 ,−

1
2

)

and P =
(

1
4 ,

1
4 ,

1
4

)

for the BCC lat-
tice2; there are none for the FCC lattice. R and H have
Oh symmetry, and P has Td symmetry. Previous studies
have indeed suggested the use of different combinations
of these k-points for substitutional defects in cubic host
lattices [17, 27,28].
In order to assess the effect of k-point sampling on the

properties of the defect supercell, we have developed a
tight-binding model of the system that extends Watkins’
four-orbital LCAO model to include a small hopping ma-
trix element between defect centres in neighbouring super-
cells (see the Appendix for a description of the model). In
Fig. 3 it can be seen that this model accurately describes
the qualitative details of the three disperse defect bands
in the band gap as compared with DFT calculations of
both the gold centre and the vacancy. Furthermore, the
model predicts an exact cancellation of all finite size ef-
fects (terms depending on the inter-supercell hopping el-
ement) at the high-symmetry points R, H, P and Γ, so
that the degree of Jahn-Teller distortion and correspond-
ing decrease in energy is the same as for an isolated defect
centre. Instead, the use of a dense grid that samples low-
symmetry k-points favors the undistorted lattice, resulting
in no distortion below a critical system size; this behav-

2The high-symmetry points are given as fractional coordinates of
the reciprocal lattice vectors for each Bravais lattice.
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Fig. 3: Band structure of the undistorted BCC defect supercell
from (a) LSDA-DFT and (b) the tight-binding model described
in the Appendix. The three defect bands in the band gap
are shown in blue. For (a), the calculation is of the 256-atom
supercell, with dark filled circles showing the Au substitutional
system and light crosses the vacancy (both in their neutral
charge state). For (b), the red band is the nodeless combination
buried within the bulk Si valence band, as shown in Fig. 2.

ior has previously been found in DFT calculations of the
vacancy [17, 19]. The model shows that above this criti-
cal value the correct distortion is recovered even for low-
symmetry k-point samplings, although the corresponding
decrease in energy is underestimated with respect to the
isolated defect limit. We believe that these observations
explain the poor finite size convergence of the transition
levels reported for the vacancy when using a dense k-point
grid instead of Γ-point only sampling [19]; we postulate
that this is a general phenomenon for Jahn-Teller defects
in diamond lattices.

Due to the simplicity of the tight-binding model, how-
ever, we do not expect it to give quantitatively accurate
predictions for the relative finite size convergence of the
various high-symmetry k-points. Therefore, we have cal-
culated with DFT the transitions for the sequence Au1−,
Au0, Au1+ with Γ + H sampling [28] and P-point only
sampling; in both cases, the negative-U effect is main-
tained, such that E (1+/1−) is the only thermodynami-
cally stable transition. The position of this level, however,
changes significantly with respect to the Γ-point only sam-
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pling case (by −0.09 eV and +0.18 eV, respectively). In
order to check which of these sampling schemes gives the
most accurate level positions, we have performed the cal-
culation using a large 864-atom BCC supercell, by em-
bedding the relaxed ionic positions around the defect site
obtained from the 256-atom calculation into the larger sys-
tem3. The transition level obtained is at εv + 0.34 eV;
among the different sampling schemes tested in the 256-
atom system, Γ-point only has the smallest discrepancy
with respect to this value (+0.03 eV).

Another important question relates to the accuracy of
the LSDA for exchange and correlation, since it is well
known that both local and semi-local functionals suffer
from a pathological self-interaction error [29], which can
be problematic for correctly placing deep defect levels in
the fundamental band gap [30]. Many correction meth-
ods have been proposed [30], notably the use of non-local
hybrid functionals [31–33]. We have therefore performed
additional tests on our system using the HSE06 hybrid
functional [34]. Since we are mainly interested in checking
discrepancies with the LSDA, we use the smaller 32-atom
BCC supercell with Γ-point only sampling, which exhibits
the same qualitative features of the negative-U defect cen-
tre already described. For the HSE06 calculations, we em-
ploy norm-conserving pseudopotentials and a plane-wave
cut-off energy of 500 eV. The relaxed geometries are very
close to those predicted by the LSDA (Table 2): the two
functionals agree on the symmetry of the defect centre
for all charge states with the exception of Au3−, which
reverts to ∼D2 with HSE06. Equivalent relaxations with
the LSDA on this smaller 32-atom supercell, however, also
give a different low symmetry configuration for this charge
state only, suggesting a finite-size effect.

Most importantly, HSE06 also predicts a negative-U ef-
fect for both transitions. There is, however, a noticeable
difference in the placement of the two transition levels
in the band gap, with HSE06 predicting E (1+/1−) and
E (1−/3−) to be 0.43 eV and 0.50 eV higher, respectively,
than with the LSDA. Such a shift is in qualitative agree-
ment with previous predictions [31]; however, in view of
the somewhat empirical nature of the correction offered by
the hybrid functional, we should not necessarily a priori

expect an improvement over the LSDA in the level place-
ments. Indeed, previous studies have already provided a
compelling case for the accuracy of the LSDA in describ-
ing Jahn-Teller substitutional defects in Si: the transition
levels for the vacancy are predicted within a few meV of
experiment [16, 19]. Using identical methods we find the
same level of agreement for the Au defect. A possible
explanation for this is that, despite being ‘deep’ from a
quantitative perspective, the behavior of the defect levels
is actually more similar to that of a shallow level, tied
to the valence band edge (type-I behavior, as described
in Ref. [30]); this is also confirmed by the simplified pic-

3The root mean square residual ionic force in these supercells is
less than 0.1 eV/Å.

ture offered by Watkins’ model, in which four defect states
originate from perturbed valence orbitals. In Fig. 1, there-
fore, we show the transition levels within the experimental
band gap; this effectively equates to applying a scissor op-
erator correction scheme [35] so as to shift the conduction
bands to higher energies.

Finally, we have tested for additional effects due to spin-
orbit coupling4, the inclusion of which gives rise to a shift
of approximately −0.1 eV in the defect formation energy.
When considering transition levels, this shift almost en-
tirely cancels between different charge states, resulting in
negligible changes to the transition levels (E (1+/1−) and
E (1−/3−) being lowered by only 15 meV and 17 meV,
respectively) and the relaxed ionic configurations, and no
qualitative change in the negative-U nature of the defect.

Conclusions. – We have proposed a solution to the
important question of the missing EPR signal of gold in sil-
icon: this point defect system is a negative-U centre (simi-
larly to the vacancy) due to a significant Jahn-Teller effect,
that favors the spin-unpolarized odd charge states (most
of all Au1−) over the spin-polarized even ones, thereby
causing the latter to be thermodynamically unstable. The
robustness of our results is supported by the quantita-
tive agreement, within chemical accuracy, between the two
experimental defect levels and our simulated predictions.
Spin-orbit coupling is found to be a comparatively weak
effect that has no qualitative bearing on the main conclu-
sion of this study. Additional tests using a hybrid func-
tional for describing exchange and correlation also confirm
the double negative-U effect, although the two transition
levels are shifted higher in the band gap.
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Appendix: The extended LCAO model. – We
briefly describe here our extension to Watkins’ LCAO
model of the defect [20, 24, 25]. A more detailed discus-
sion of our model is presented in Appendix D of Ref. [26].

Assuming that the defect does not interact with the host
lattice, we use the four dangling bonds of the Si neighbours
of the defect site to make the tight-binding Hamiltonian
given in Eq. 2. The parameters a and b are the abso-
lute values of the on-site and two-centre matrix elements
for the undistorted lattice. We add a term ∆ = αQ to
four off-diagonal elements, proportional to a hypothetical
tetragonal distortion Q of the system; Q is related to the
bond length between a pair of dimerized neighbours of the

4Calculations were performed with the abinit code [36] (version
6.6), the LDA for xc, HGH norm-conserving pseudopotentials [37],
Γ-point only sampling, and a plane-wave cut-off energy of 800 eV.
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H(∆,c) =









−a c.c. c.c. c.c.
−b− c(eik·a1 + eik·a4)−∆ −a c.c. c.c.

−b− c(eik·a2 + eik·a4) −b− c(e−ik·a1 + eik·a2) −a c.c.
−b− c(eik·a3 + eik·a4) −b− c(e−ik·a1 + eik·a3) −b− c(e−ik·a2 + eik·a3)−∆ −a









(2)

defect centre, where Q = 0 corresponds to the undistorted
bond length, and Q = 1 to the limit of zero bond length.
Finally, c is the strength of the interaction with the nearest
orbitals from defect images in neighbouring supercells (in
the simplest approximation for BCC, each orbital inter-
acts with six extra orbitals). The translations are written
in terms of the supercell lattice vectors {a1,a2,a3} and
their sum a4.

Using Eq. 2, the equilibrium distortion Qeq and the cor-
responding decrease in formation energy ∆Ef from the
undistorted (Q = 0) to the distorted (Q = Qeq) lattice
can be calculated for different k-point sampling schemes.
We are particularly interested in the influence of finite size
effects (c 6= 0) with respect to the limit of a perfectly iso-
lated defect in an infinite lattice (c = 0).

We find that finite size effects cancel at high-symmetry
points (Γ, H and P for BCC), and so both Qeq and ∆Ef

are identical to the isolated defect centre for all supercell
sizes. The model, therefore, provides a simple explanation
as to why Γ-point only calculations exhibit the correct
relaxation even for small supercells [17, 19].

However, this cancellation does not occur for low-
symmetry k-points. As an example, we numerically in-
vestigate the behavior of the system using a 3 × 3 × 3
k-point grid. There are only two independent parameters,
the ratios c/b and α/b. We find that the model in this case
features a discontinuity inQeq: below a critical value of c/b
(which depends on α/b), the correct relaxation is obtained,
but above it the system remains completely undistorted.
This is consistent with our observation of an abrupt change
in symmetry for the neutral vacancy [19], which remains
Td for supercells <256 atoms and switches to D2d for those
≥256 atoms. Furthermore, ∆Ef is zero in the undistorted
region, and increases approximately linearly in the dis-
torted region to the correct value at c = 0. This suggests
that small supercells with dense k-point sampling will un-
derestimate the gain in energy from Jahn-Teller distortion,
even if they show the correct change in symmetry.

REFERENCES

[1] Bullis W. M., Solid State Electron., 9 (1966) 143.
[2] Wagner R. S. and Ellis W. C., Appl. Phys. Lett., 4

(1964) 89.
[3] Allen J. E. et al., Nature Nanotech., 3 (2008) 168.
[4] Collins C. B., Carlson R. O. and Gallagher C. J.,

Phys. Rev., 105 (1957) 1168.
[5] Fazzio A., Caldas M. J. and Zunger A., Phys. Rev.

B, 32 (1985) 934.
[6] Petersen J. W. and Nielsen J., Appl. Phys. Lett., 56

(1990) 1122.

[7] Anderson F. G., Ham F. S. and Watkins G. D., Phys.
Rev. B, 45 (1992) 3287.

[8] Anderson F. G., J. Phys.: Condens. Matter, 3 (1991)
4421.

[9] Watkins G. D., Kleverman M., Thilderkvist A. and
Grimmeiss H. G., Phys. Rev. Lett., 67 (1991) 1149.

[10] Son N. T., Gregorkiewicz T. and Ammerlaan C.

A. J., Phys. Rev. Lett., 69 (1992) 3185.
[11] Brotherton S. D., Bradley P., Gill A. and Weber

E. R., J. Appl. Phys., 55 (1984) 952.
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