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We present a formulation of the density-functional theory+Hubbard model �DFT+U� method that is self-
consistent over the choice of Hubbard projectors used to define the correlated subspaces. In order to overcome
the arbitrariness in this choice, we propose the use of nonorthogonal generalized Wannier functions �NGWFs�
as projectors for the DFT+U correction. We iteratively refine these NGWF projectors and, hence, the DFT
+U functional, such that the correlated subspaces are fully self-consistent with the DFT+U ground state. We
discuss the convergence characteristics of this algorithm and compare ground-state properties thus computed
with those calculated using hydrogenic projectors. Our approach is implemented within, but not restricted to,
a linear-scaling DFT framework, opening the path to DFT+U calculations on systems of unprecedented size.
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The physics of localized electrons bound to transition
metal or Lanthanoid ions is important for understanding and
harnessing the behavior of complex systems such as molecu-
lar magnets,1 inorganic catalysts,2 and the organometallic
molecules that facilitate some of the most critical chemical
reactions in biochemistry.3

Despite its success at predicting ground-state properties of
materials, Kohn-Sham density-functional theory �DFT�
�Ref. 4� fails to describe the physics of such
“correlated-electron” systems when local or semilocal
exchange-correlation �XC� functionals are used, often pre-
dicting results that are not only quantitatively but qualita-
tively inconsistent with experiment.5 The origin of this ap-
parent failure has been understood since the work of Perdew
et al.6 and is related to the unphysical curvature of the energy
functional with respect to electronic occupation number7,8

inherent to such functionals unless a self-interaction correc-
tion is employed.9

DFT+Hubbard U �DFT+U� �Ref. 10� is a simple, com-
putationally inexpensive method for improving the descrip-
tion of on-site Coulomb interactions provided by conven-
tional XC functionals and, hence, for extending the range of
applicability of DFT to strongly correlated materials.

The principle of DFT+U is to divide the system into a
delocalized, free-electron-like part, the “bath,” which is well-
described by conventional XC functionals, and a set of “cor-
related sites” which is not. The XC functional for electrons
associated with these sites is then explicitly augmented with
screened Coulomb interactions, the form of which are in-
spired by the Hubbard model,11 together with a double-
counting term to correct for the component already included
within the XC functional.

The correlated sites are defined by a set of 3d and/or 4f
atomiclike orbitals, or “Hubbard projectors,” that are chosen
a priori. Projector functions that are commonly used include
hydrogenic wave functions,7 maximally localized Wannier
functions,12 and linear muffin-tin orbital-type orbitals.5,10

This arbitrariness constitutes an unsatisfactory, adjustable pa-
rameter in the DFT+U method.

In this Rapid Communication, we present an approach in
which the ambiguity in the choice of Hubbard projectors is

removed, and in which they are determined self-consistently
with respect to the DFT+U ground state. We first outline the
theoretical framework of our approach and present results of
calculations on ligated iron porphyrin �FeP�. We examine the
adequacy of hydrogenic orbitals as Hubbard projectors and,
in particular, the sensitivity of the results to the form of these
orbitals. We show that optimized nonorthogonal generalized
Wannier functions �NGWFs� provide an unambiguous and
natural choice for Hubbard projectors and we introduce a
technique for self-consistently delineating the subspaces in
which correlation effects play an important role.

Our implementation is within the framework of linear-
scaling DFT, however, the same self-consistent projector
methodology may be applied to any DFT approach that
solves for localized Wannier-type functions �either directly,
or indirectly in a post-processing step using an interface to a
code such as WANNIER90 �Ref. 13��. Furthermore, our ap-
proach may be readily combined with recently proposed
methods to calculate U parameters from first principles,7,14

facilitating entirely parameter-free and self-consistent
DFT+U calculations.

The Hubbard energy correction term in DFT+U can be
interpreted as a functional that penalizes the unphysical non-
integer occupancy of the spatially localized d or f orbitals,
those that are most prone to the spurious self-interaction
present in standard DFT XC functionals.

We use a rotationally invariant correction term

EU = �
I�

U�I����

2 ��
m

nm
m − �

mm�

nm
m�nm�

m ��I����
, �1�

where U�I���� represents the screened Coulomb repulsion be-
tween electrons of spin �, localized on the correlated site I.
Equation �1� is, in effect, a penalty functional for deviation
from idempotency of the projection of the single-particle
density-matrix onto each correlated subspace.

The occupancy matrix in the case of a set of M nonor-
thogonal Hubbard projectors ��m

�I�	, m� 
1, . . . ,M�, localized
on site I, is given by
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where �ik
��� is a Kohn-Sham eigenstate for spin channel �

with band index i, crystal momentum k, and occupancy f ik
���,

and P̂m
�I�m�= ��m

�I�	���I�m�� is the Hubbard projection operator.
The contravariant dual vectors ���I�m	 are related to the co-
variant projectors through the site-centered overlap matrix
Omm�

�I� = ��m
�I� ��m�

�I� 	 which is a metric on the correlated sub-

space C�I� : ���I�m	= ��m�
�I� 	O�I�m�m; O�I�m�m�Om�m

�I� =�m
m�.

Our definition of the occupancy matrix differs to that of
Refs. 15 and has the following desirable properties: the ex-
pressions are tensorially correct; the energy and resulting po-
tential are rotationally invariant; the resulting potential is
Hermitian and localized to the correlated site; and the trace
of the occupancy matrix gives the occupancy of the corre-
lated site.16 The contravariant metric O�I�mm� is calculated
only as an inverse of the covariant overlap matrix Omm�

�I� ,
therefore, the duals of the Hubbard projectors are also local-
ized to the site. As a result, and in contrast with previously
proposed approaches to DFT+U models using nonorthogo-
nal projectors, the DFT+U potential constructed from the
tensorially consistent energy for a given correlated site re-
mains manifestly local to that site. We note that for the spe-
cial case of an orthogonal set of projectors on each site, the
projection operator is self-adjoint and the above expressions
reduce to the DFT+U correction of Refs. 7.

Any set of localized functions may, in principle, be used
as Hubbard projectors with which to define the occupancy
matrix. Solutions of appropriate orbital symmetry of the hy-
drogenic Schrödinger equation, such as atomiclike or linear
muffin-tin orbitals, are a common choice.5,10,14 These are
generally characterized by an effective charge Z that deter-
mines their spatial diffuseness. For a given value of U, re-
sults of DFT+U calculations with different values chosen for
Z will not necessarily yield the same ground-state
properties.14,17 Notwithstanding, hydrogenic orbitals may be
inappropriate in cases in which the orbitals of the correlated
manifold differ significantly from atomic wave functions.

In order to obtain accurate occupancies, a set of projectors
is required which adequately accounts for electronic hybrid-
ization and which, if possible, is defined unambiguously for
the system under study. Wannier functions, in particular
maximally localized Wannier functions �MLWFs�,18 form
just such an accurate minimal basis. They have been used
with good effect to augment DFT with localized many-body
interactions,19 and there is numerical evidence to suggest that
MLWFs constitute the projector set which maximizes the U
parameter.12

We work with the single-particle density matrix, which is
expressed in separable form20 ��r ,r��=���	��r�K��	��r��
in terms of a localized basis of NGWFs �Ref. 21� 
	��r��,
related to the Kohn-Sham eigenstates by a linear
transformation �n

����r�=��	��r�Mn
����. The density kernel

K��= �	���̂�	�	 is the representation of the single-particle
density operator �̂ in terms of the contravariant duals 
	��r��
of the NGWFs, which satisfy �	� �	�	=��

�. The NGWFs are
in turn expanded in terms of a systematic basis of Fourier-

Lagrange, or psinc,22 functions. The size of this basis is de-
termined by an energy cutoff, akin to a plane-wave kinetic-
energy cutoff, with respect to which calculations are
converged. The DFT energy functional is iteratively mini-
mized with respect to both the density kernel and the NGWF
expansion coefficients. The minimization scheme in the
ONETEP linear-scaling code is detailed in Refs. 23.

These NGWFs, therefore, are a readily accessible set of
localized orbitals which are calculated with linear-scaling
computational cost. Similarly to MLWFs, NGWF centers
may be used to calculate polarizabilities.16 Thus, in this
framework, it is natural to use a localized subset of Wannier
functions obtained at the end of a ground-state calculation,
with appropriate orbital character, as Hubbard projectors for
defining the DFT+U occupancy matrix. NGWFs are adapted
to their chemical environment, reflecting the balance be-
tween the competing tendencies of electron itinerancy and
localization in strongly correlated systems and, as a result,
provide an accurate representation of the occupancy of the
correlated site.

We propose a projector self-consistent scheme whereby
the Hubbard projectors are determined self-consistently by
iteratively solving for the Kohn-Sham ground-state using the
Hubbard projectors defined by NGWFs from the DFT+U
ground-state energy calculation of the previous iteration. In
this way, the Hubbard projectors converge to those that are
optimally adapted for their own DFT+U ground-state den-
sity. This scheme, as we go on to show, rapidly and mono-
tonically converges to an unambiguously defined DFT+U
ground state which, for a given U parameter, is of lowest
energy. In other words, the DFT+U energy functional is ad-
ditionally minimized with respect to the set of localized
NGWF projectors that are, at convergence, self-consistent
with the DFT+U calculation from which they are deter-
mined.

We applied our method to FeP. Metalloporphyrin systems,
such as FeP, play an important role in biochemistry. The
ability of metalloporphyrins to bind simple molecules is of
interest, particularly in the case of FeP which can have a
greater affinity for CO and NO than O2, resulting in hin-
drance of respiration.

We performed fully converged energy minimization on
FeP, and its complex with carbon monoxide, using the
ONETEP code.23 We used spin-polarized DFT+U within
the PBE generalized-gradient �GGA� �Ref. 24� and
pseudopotential25 approximations. An equivalent plane-wave
kinetic-energy cutoff of 1000 eV was used with a cubic
simulation cell of side length 37 Å. The NGWFs were spa-
tially restricted to atom-centered spheres of radius 5.3 Å and
no density kernel truncation was applied. Since the principal
focus of this study was the dependence of computed DFT
+U ground-state properties on variations in the Hubbard pro-
jectors for a given U value, optimized PBE �U=0 eV� struc-
tures were used.

Shown in Fig. 1, is the interaction energy between FeP
and CO as an illustration that the binding affinity between
moieties in DFT+U can be strongly influenced by the local-
ization of the Hubbard projectors. As can be seen, binding
affinity is by no means uniquely defined when hydrogenic
projectors are used, although this may be partly compensated
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by a projector-dependent first principles7,14 U parameter. At
U=6 eV it varies from approximately 0.04–0.69 eV over the
range of Z considered; at U=4 eV the result is even quali-
tatively ambiguous as a function of Z. Using self-consistent
NGWF projectors �dashed lines� generally results in ener-
getically less favorable ligand binding, demonstrating that,
for a given value of U, NGWF projectors more effectively
counteract the spurious tendency of GGA functionals to
overbind ligands to FeP.26 Also shown in Fig. 1, the pro-
jected magnetic dipole moment of FeP in its ground state
varies strongly with the value of Z chosen for hydrogenic
projectors �solid line� with only a narrow range of Z at
U=6 eV giving values that are close to the expected 2.0
B
for optimal projectors. Moreover, a pathological inconsis-
tency with experiment emerges in that U values of sufficient
magnitude to achieve the requisite moment �for some Z�
bring us into the unphysical regime where FeP+CO binding
is disfavored. Conversely, the use of self-consistent NGWF
projectors �dashed� results in a projected magnetic moment
which lies within the physically reasonable range and is
rather insensitive to U.

Figure 2 demonstrates the stable convergence of the Hub-
bard projector self-consistency scheme for FeP+CO at dif-
ferent values of U. Each data point represents an individual
variational total-energy minimization, wherein the Hubbard
projectors are reconstructed from the optimized ground-state
NGWFs from the previous iteration. The energy decreases
rapidly as the projectors are refined, converging within a
small number of iterations. This confirms our understanding

that the Wannier are optimally adapted for the hybridized
character of the electronic orbitals while minimizing the en-
ergy. In this way, more spatially diffuse self-interaction cor-
rections are introduced than with purely atomic orbitals, in a
complimentary manner to such methods as DFT+U+V �Ref.
28� which allow more general interaction terms between
sites.

Since we reuse the self-consistent density from the previ-
ous projector iteration to initialize the following iteration,
much fewer NGWF optimization steps are required at each
successive projector update step. As demonstrated in Fig. 3,
this results in an overall computational effort for achieving
projector self-consistency that is only a small overhead com-
pared to the conventional approach.

In order to achieve meaningful insight into the U depen-
dence of bond formation, it is necessary to allow for Hub-
bard projector update consistent with variations in the mo-
lecular geometry. We stress that ionic force expressions are
not complicated by the inclusion of self-consistent Hubbard
projectors with no additional terms appearing over those in
conventional DFT+U.
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FIG. 1. �Color online� The interaction energy, positive for an
unbound ligand, of the CO and FeP moieties �top panel� and the
magnetic dipole moment projected onto the correlated manifold of
triplet-state FeP �bottom panel�. Both are plotted at various U as a
function of the effective charge Z used to define the hydrogenic
projectors �solid lines� while dashed lines show those quantities
calculated with self-consistent NGWF Hubbard projectors. Solid
horizontal lines indicate the binding threshold �top� and the ideal
projected moment �bottom�.
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FIG. 2. �Color online� The difference in total energy E and the
total energy at projector self-consistency ESCF as a function of the
projector self-consistency iteration. The procedure is initialized �it-
eration 0� with a set of hydrogenic 3d projectors to construct the
correlated subspace, using the Clementi-Raimondi �Ref. 27� effec-
tive charge of Z=11.17 for iron 3d orbitals.
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FIG. 3. �Color online� The number of NGWF optimization steps
needed to converge the total energy for each projector self-
consistency iteration for FeP+CO. Shown inset is the convergence
of the correlated subspace, as quantified by its 3d-orbital character.

PROJECTOR SELF-CONSISTENT DFT+U USING… PHYSICAL REVIEW B 82, 081102�R� �2010�

RAPID COMMUNICATIONS

081102-3



In conclusion, we have proposed and demonstrated a
method within DFT+U for obtaining Hubbard projectors
that are uniquely defined, optimally adapted to their chemical
environment, and consistent with the DFT+U ground-state
density. Our implementation may be incorporated into any
method that either solves directly for localized Wannier-type
states or which computes such states in a post-processing
fashion. If combined self-consistently with approaches for

calculating U from first principles,7,14 this work opens up the
possibility of parameter-free DFT+U calculations on large
systems.
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